Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570969

RESUMO

Toxic breakdown products of young Camelina sativa (L.) Crantz, glucosinolates can eliminate microorganisms in the soil. Since microorganisms are essential for phosphate cycling, only insensitive microorganisms with phosphate-solubilizing activity can improve C. sativa's phosphate supply. In this study, 33P-labeled phosphate, inductively coupled plasma mass spectrometry and pot experiments unveiled that not only Trichoderma viride and Pseudomonas laurentiana used as phosphate-solubilizing inoculants, but also intrinsic soil microorganisms, including Penicillium aurantiogriseum, and the assemblies of root-colonizing microorganisms solubilized as well phosphate from apatite, trigger off competitive behavior between the organisms. Driving factors in the competitiveness are plant and microbial secondary metabolites, while glucosinolates of Camelina and their breakdown products are regarded as key compounds that inhibit the pathogen P. aurantiogriseum, but also seem to impede root colonization of T. viride. On the other hand, fungal diketopiperazine combined with glucosinolates is fatal to Camelina. The results may contribute to explain the contradictory effects of phosphate-solubilizing microorganisms when used as biofertilizers. Further studies will elucidate impacts of released secondary metabolites on coexisting microorganisms and plants under different environmental conditions.

2.
Plants (Basel) ; 12(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840048

RESUMO

Abutilon theophrasti Medik. (velvetleaf) is a problematic annual weed in field crops which has invaded many temperate parts of the world. Since the loss of crop yields can be extensive, approaches to manage the weed include not only conventional methods, but also biological methods, for instance by microorganisms releasing phytotoxins and plant-derived allelochemicals. Additionally, benzoxazinoid-rich rye mulches effective in managing common weeds like Amaranthus retroflexus L. have been tested for this purpose. However, recent methods for biological control are still unreliable in terms of intensity and duration. Rye mulches were also ineffective in managing velvetleaf. In this review, we present the attempts to reduce velvetleaf infestation by biological methods and discuss possible reasons for the failure. The resilience of velvetleaf may be due to the extraordinary capacity of the plant to collect, for its own survival, the most suitable microorganisms from a given farming site, genetic and epigenetic adaptations, and a high stress memory. Such properties may have developed together with other advantageous abilities during selection by humans when the plant was used as a crop. Rewilding could be responsible for improving the microbiomes of A. theophrasti.

3.
Plants (Basel) ; 11(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36432807

RESUMO

Peppermint (Mentha x piperita) is a species with inhibitory allelopathic properties due to its high amounts of terpenes. Recent studies have disclosed dosage dependent growth promotion or defense reactions in plants when facing appropriate amounts of Mentha bouquet terpenes. These positive effects could be of interest for agricultural applications. To obtain more insights into leaf growth modulations, the expression of Arabidopsis and Brassica rapa TCP transcription factors were studied after fumigation with M. x piperita bouquets (Arabidopsis), with M. x piperita essential oil or with limonene (Arabidopsis and Chinese cabbage). According to qPCR studies, expression of TCP3, TCP24, and TCP20 were downregulated by all treatments in Arabidopsis, leading to altered leaf growth. Expressions of B. rapa TCPs after fumigation with the essential oil or limonene were less affected. Extensive greenhouse and polytunnel trials with white cabbage and Mentha plants showed that the developmental stage of the leaves, the dosage, and the fumigation time are of crucial importance for changed fresh and dry weights. Although further research is needed, the study may contribute to a more intensive utilization of ecologically friendly and species diversity conservation and positive allelopathic interactions in future agricultural systems.

4.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897961

RESUMO

Incubation of Aminobacter aminovorans, Paenibacillus polymyxa, and Arthrobacter MPI764 with the microbial 2-benzoxazolinone (BOA)-degradation-product 2-acetamido-phenol, produced from 2-aminophenol, led to the recently identified N-(2-hydroxy-5-nitrophenyl) acetamide, to the hitherto unknown N-(2-hydroxy-5-nitrosophenyl)acetamide, and to N-(2-hydroxy-3-nitrophenyl)acetamide. As an alternative to the formation of phenoxazinone derived from aminophenol, dimers- and trimers-transformation products have been found. Identification of the compounds was carried out by LC/HRMS and MS/MS and, for the new structure N-(2-hydroxy-5-nitrosophenyl)acetamide, additionally by 1D- and 2D-NMR. Incubation of microorganisms, such as the soil bacteria Pseudomonas laurentiana, Arthrobacter MPI763, the yeast Papiliotrema baii and Pantoea ananatis, and the plants Brassica oleracea var. gongylodes L. (kohlrabi) and Arabidopsis thaliana Col-0, with N-(2-hydroxy-5-nitrophenyl) acetamide, led to its glucoside derivative as a prominent detoxification product; in the case of Pantoea ananatis, this was together with the corresponding glucoside succinic acid ester. In contrast, Actinomucor elegans consortium synthesized 2-acetamido-4-nitrophenyl sulfate. 1 mM bioactive N-(2-hydroxy-5-nitrophenyl) acetamide elicits alterations in the Arabidopsis thaliana expression profile of several genes. The most responsive upregulated gene was pathogen-inducible terpene synthase TPS04. The bioactivity of the compound is rapidly annihilated by glucosylation.


Assuntos
Arabidopsis , Acetamidas , Acetanilidas , Arabidopsis/metabolismo , Glucosídeos/metabolismo , Nitratos , Pantoea , Espectrometria de Massas em Tandem
5.
J Chem Ecol ; 48(2): 219-239, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34988771

RESUMO

For the characterization of BOA-OH insensitive plants, we studied the time-dependent effects of the benzoxazolinone-4/5/6/7-OH isomers on maize roots. Exposure of Zea mays seedlings to 0.5 mM BOA-OH elicits root zone-specific reactions by the formation of dark rings and spots in the zone of lateral roots, high catalase activity on root hairs, and no visible defense reaction at the root tip. We studied BOA-6-OH- short-term effects on membrane lipids and fatty acids in maize root tips in comparison to the benzoxazinone-free species Abutilon theophrasti Medik. Decreased contents of phosphatidylinositol in A. theophrasti and phosphatidylcholine in maize were found after 10-30 min. In the youngest tissue, α-linoleic acid (18:2), decreased considerably in both species and recovered within one hr. Disturbances in membrane phospholipid contents were balanced in both species within 30-60 min. Triacylglycerols (TAGs) were also affected, but levels of maize diacylglycerols (DAGs) were almost unchanged, suggesting a release of fatty acids for membrane lipid regeneration from TAGs while resulting DAGs are buildings blocks for phospholipid reconstitution, concomitant with BOA-6-OH glucosylation. Expression of superoxide dismutase (SOD2) and of ER-bound oleoyl desaturase (FAD2-2) genes were contemporaneously up regulated in contrast to the catalase CAT1, while CAT3 was arguably involved at a later stage of the detoxification process. Immuno-responses were not elicited in short-terms, since the expression of NPR1, POX12 were barely affected, PR4 after 6 h with BOA-4/7-OH and PR1 after 24 h with BOA-5/6-OH. The rapid membrane recovery, reactive oxygen species, and allelochemical detoxification may be characteristic for BOA-OH insensitive plants.


Assuntos
Meristema , Raízes de Plantas , Benzoxazóis/química , Benzoxazóis/metabolismo , Benzoxazóis/farmacologia , Expressão Gênica , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/farmacologia , Meristema/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zea mays/genética , Zea mays/metabolismo
6.
Front Microbiol ; 12: 666010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122379

RESUMO

Plant metabolites can shape the microbial community composition in the soil. Two indole metabolites, benzoxazolinone (BOA) and gramine, produced by different Gramineae species, and quercetin, a flavonoid synthesized by many dicot species, were studied for their impacts on the community structure of field soil bacteria. The three plant metabolites were directly added to agricultural soil over a period of 28 days. Alterations in bacterial composition were monitored by next generation sequencing of 16S rRNA gene PCR products and phospholipid fatty acid analysis. Treatment of the soil with the plant metabolites altered the community composition from phylum to amplicon sequence variant (ASV) level. Alpha diversity was significantly reduced by BOA or quercetin, but not by gramine. BOA treatment caused a decrease of the relative abundance of 11 ASVs, while only 10 ASVs were increased. Gramine or quercetin treatment resulted in the increase in relative abundance of many more ASVs (33 or 38, respectively), most of them belonging to the Proteobacteria. Isolation and characterization of cultivable bacteria indicated an enrichment in Pseudarthrobacter or Pseudomonas strains under BOA/quercetin or BOA/gramine treatments, respectively. Therefore, the effects of the treatments on soil bacteria were characteristic for each metabolite, with BOA exerting a predominantly inhibitory effect, with only few genera being able to proliferate, while gramine and quercetin caused the proliferation of many potentially beneficial strains. As a consequence, BOA or gramine biosynthesis, which have evolved in different barley species, is accompanied with the association of distinct bacterial communities in the soil, presumably after mutual adaptation during evolution.

7.
PLoS One ; 13(7): e0200160, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969500

RESUMO

Land plants are engaged in intricate communities with soil bacteria and fungi indispensable for plant survival and growth. The plant-microbial interactions are largely governed by specific metabolites. We employed a combination of lipid-fingerprinting, enzyme activity assays, high-throughput DNA sequencing and isolation of cultivable microorganisms to uncover the dynamics of the bacterial and fungal community structures in the soil after exposure to isothiocyanates (ITC) obtained from rapeseed glucosinolates. Rapeseed-derived ITCs, including the cyclic, stable goitrin, are secondary metabolites with strong allelopathic affects against other plants, fungi and nematodes, and in addition can represent a health risk for human and animals. However, the effects of ITC application on the different bacterial and fungal organisms in soil are not known in detail. ITCs diminished the diversity of bacteria and fungi. After exposure, only few bacterial taxa of the Gammaproteobacteria, Bacteriodetes and Acidobacteria proliferated while Trichosporon (Zygomycota) dominated the fungal soil community. Many surviving microorganisms in ITC-treated soil where previously shown to harbor plant growth promoting properties. Cultivable fungi and bacteria were isolated from treated soils. A large number of cultivable microbial strains was capable of mobilizing soluble phosphate from insoluble calcium phosphate, and their application to Arabidopsis plants resulted in increased biomass production, thus revealing growth promoting activities. Therefore, inclusion of rapeseed-derived glucosinolates during biofumigation causes losses of microbiota, but also results in enrichment with ITC-tolerant plant microorganisms, a number of which show growth promoting activities, suggesting that Brassicaceae plants can shape soil microbiota community structure favoring bacteria and fungi beneficial for Brassica plants.


Assuntos
Brassica rapa/metabolismo , Glucosinolatos/metabolismo , Microbiota , Microbiologia do Solo , Técnicas de Cultura de Células , Ácidos Cumáricos/metabolismo , Glicosídeo Hidrolases/metabolismo , Microbiota/fisiologia , Oxazolidinonas/metabolismo , Fosfolipídeos/análise , Solo/química
8.
Plant Signal Behav ; 12(8): e1358843, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28786736

RESUMO

A facultative, microbial micro-community colonizing roots of Abutilon theophrasti Medik. supports the plant in detoxifying hydroxylated benzoxazolinones. The root micro-community is composed of several fungi and bacteria with Actinomucor elegans as a dominant species. The yeast Papiliotrema baii and the bacterium Pantoea ananatis are actively involved in the detoxification of hydroxylated benzoxazolinones by generating H2O2. At the root surface, laccases, peroxidases and polyphenol oxidases cooperate for initiating polymerization reactions, whereby enzyme combinations seem to differ depending on the hydroxylation position of BOA-OHs. A glucosyltransferase, able to glucosylate the natural benzoxazolinone detoxification intermediates BOA-5- and BOA-6-OH, is thought to reduce oxidative overshoots by damping BOA-OH induced H2O2 generation. Due to this detoxification network, growth of Abutilon theophrasti seedlings is not suppressed by BOA-OHs. Polymer coats have no negative influence. Alternatively, quickly degradable 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one can be produced by the micro-community member Pantoea ananatis at the root surfaces. The results indicate that Abutilon theophrasti has evolved an efficient strategy by recruiting soil microorganisms with special abilities for different detoxification reactions which are variable and may be triggered by the allelochemical´s structure and by environmental conditions.


Assuntos
Benzoxazóis/farmacologia , Malvaceae/microbiologia , Feromônios/farmacologia , Raízes de Plantas/microbiologia , Benzoxazóis/química , Catalase/metabolismo , Cromatografia Líquida de Alta Pressão , Glucosídeos/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidroxilação , Isomerismo , Feromônios/química , Extratos Vegetais/química , Raízes de Plantas/enzimologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Especificidade da Espécie
9.
Commun Integr Biol ; 10(3): e1302633, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28702124

RESUMO

Pantoea ananatis is a bacterium associated with other microorganisms on Abutilon theophrasti Medik. roots. It converts 6-hydroxybenzoxazolin-2(3H)-one (BOA-6-OH), a hydroxylated derivative of the allelochemical benzoxazolin-2(3H)-one, into 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one. The compound was identified by NMR and mass spectrometric methods. In vitro synthesis succeeded with Pantoea protein, with isolated proteins from the Abutilon root surface or with horseradish peroxidase in the presence of nitrite and H2O2. Nitro-BOA-6-OH is completely degraded further by Pantoea ananatis and Abutilon root surface proteins. Under laboratory conditions, 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one inhibits Lepidium sativum seedling growth whereas Abutilon theophrasti is much less affected. Although biodegradable, an agricultural use of 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one is undesirable because of the high toxicity of nitro aromatic compounds to mammals.

10.
Plant Signal Behav ; 11(1): e1119962, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26645909

RESUMO

The major detoxification product in maize roots after 24 h benzoxazolin-2(3H)-one (BOA) exposure was identified as glucoside carbamate resulting from rearrangement of BOA-N-glucoside, but the pathway of N-glucosylation, enzymes involved and the site of synthesis were previously unknown. Assaying whole cell proteins revealed the necessity of H2O2 and Fe(2+) ions for glucoside carbamate production. Peroxidase produced BOA radicals are apparently formed within the extraplastic space of the young maize root. Radicals seem to be the preferred substrate for N-glucosylation, either by direct reaction with glucose or, more likely, the N-glucoside is released by glucanase/glucosidase catalyzed hydrolysis from cell wall components harboring fixed BOA. The processes are accompanied by alterations of cell wall polymers. Glucoside carbamate accumulation could be suppressed by the oxireductase inhibitor 2-bromo-4´-nitroacetophenone and by peroxidase inhibitor 2,3-butanedione. Alternatively, activated BOA molecules with an open heterocycle may be produced by microorganisms (e.g., endophyte Fusarium verticillioides) and channeled for enzymatic N-glucosylation. Experiments with transgenic Arabidopsis lines indicate a role of maize glucosyltransferase BX9 in BOA-N-glycosylation. Western blots with BX9 antibody demonstrate the presence of BX9 in the extraplastic space. Proteomic analyses verified a high BOA responsiveness of multiple peroxidases in the apoplast/cell wall. BOA incubations led to shifting, altered abundances and identities of the apoplast and cell wall located peroxidases, glucanases, glucosidases and glutathione transferases (GSTs). GSTs could function as glucoside carbamate transporters. The highly complex, compartment spanning and redox-regulated glucoside carbamate pathway seems to be mainly realized in Poaceae. In maize, carbamate production is independent from benzoxazinone synthesis.


Assuntos
Benzoxazóis/metabolismo , Zea mays/metabolismo , Acetofenonas/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Benzoxazóis/química , Benzoxazóis/farmacologia , Bioensaio , Western Blotting , Carbamatos/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Citosol/efeitos dos fármacos , Citosol/metabolismo , Diacetil/farmacologia , Ácido Etacrínico/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/fisiologia , Glucosídeos/metabolismo , Glutationa Transferase/metabolismo , Glicosilação/efeitos dos fármacos , Inativação Metabólica/efeitos dos fármacos , Peroxidases/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/metabolismo , Zea mays/efeitos dos fármacos
11.
J Chem Ecol ; 40(11-12): 1286-98, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25432667

RESUMO

Abutilon theophrasti Medik., previously found to be rather insensitive to benzoxazinoid containing rye mulch and the allelochemical benzoxazolin-2(3H)-one (BOA), can be associated with the zygomycete Actinomucor elegans, whereby the fungus colonizes the root relatively superficially and mainly in the maturation zone. The fungus mitigates necrosis of the cotyledons when seedlings are incubated with 2 mM BOA, in contrast to those that lack the fungus. In liquid cultures of the fungus, tryptophan was identified. The accumulation of tryptophan is increased in presence of BOA. This amino acid seems to be important in protecting Abutilon against BOA and its derivatives since it suppressed the accumulation of BOA derived, highly toxic 2-aminophen-oxazin-3-one (APO) in the medium and on the root surface during BOA incubations of Abutilon seedlings. Although A. elegans is insensitive to BOA and APO, the fungus is not able to protect the plant against harmful effects of APO, when seedlings are treated with the compound. Abutilon can detoxify BOA via BOA-6-OH glucosylation probably by a cell wall associated glucosyltransferase, but only low amounts of the product accumulate. Low tryptophan concentrations can contribute to a degradation of the toxic intermediate BOA-6-OH by Fenton reactions, whereby the amino acid is oxidized. One of the oxidation products was identified as 4(1H)-quinolinone, which is the core substructure of the quorum sensing molecule 2-heptyl-3-hydroxy-4-quinolone. The mutualistic association of Abutilon theophrasti with Actinomucor elegans is considered as opportunistic and facultative. Such plant-fungus associations depend rather likely on environmental conditions, such as the mode of fertilization.


Assuntos
Benzoxazóis/metabolismo , Malvaceae/metabolismo , Malvaceae/microbiologia , Mucorales/fisiologia , Feromônios/metabolismo , Malvaceae/genética , Dados de Sequência Molecular , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Análise de Sequência de DNA
12.
J Chem Ecol ; 39(2): 154-74, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23385365

RESUMO

The allelopathic potency of rye (Secale cereale L.) is due mainly to the presence of phytotoxic benzoxazinones-compounds whose biosynthesis is developmentally regulated, with the highest accumulation in young tissue and a dependency on cultivar and environmental influences. Benzoxazinones can be released from residues of greenhouse-grown rye at levels between 12 and 20 kg/ha, with lower amounts exuded by living plants. In soil, benzoxazinones are subject to a cascade of transformation reactions, and levels in the range 0.5-5 kg/ha have been reported. Starting with the accumulation of less toxic benzoxazolinones, the transformation reactions in soil primarily lead to the production of phenoxazinones, acetamides, and malonamic acids. These reactions are associated with microbial activity in the soil. In addition to benzoxazinones, benzoxazolin-2(3H)-one (BOA) has been investigated for phytotoxic effects in weeds and crops. Exposure to BOA affects transcriptome, proteome, and metabolome patterns of the seedlings, inhibits germination and growth, and can induce death of sensitive species. Differences in the sensitivity of cultivars and ecotypes are due to different species-dependent strategies that have evolved to cope with BOA. These strategies include the rapid activation of detoxification reactions and extrusion of detoxified compounds. In contrast to sensitive ecotypes, tolerant ecotypes are less affected by exposure to BOA. Like the original compounds BOA and MBOA, all exuded detoxification products are converted to phenoxazinones, which can be degraded by several specialized fungi via the Fenton reaction. Because of their selectivity, specific activity, and presumably limited persistence in the soil, benzoxazinoids or rye residues are suitable means for weed control. In fact, rye is one of the best cool season cover crops and widely used because of its excellent weed suppressive potential. Breeding of benzoxazinoid resistant crops and of rye with high benzoxazinoid contents, as well as a better understanding of the soil persistence of phenoxazinones, of the weed resistance against benzoxazinoids, and of how allelopathic interactions are influenced by cultural practices, would provide the means to include allelopathic rye varieties in organic cropping systems for weed control.


Assuntos
Benzoxazinas/metabolismo , Agricultura Orgânica/métodos , Feromônios/metabolismo , Secale/metabolismo , Controle de Plantas Daninhas/métodos , Benzoxazinas/química , Regulação da Expressão Gênica de Plantas , Feromônios/química , Secale/química , Secale/genética , Solo/química , Microbiologia do Solo
13.
J Chem Ecol ; 38(7): 933-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22614450

RESUMO

A recent greenhouse study revealed a significant reduction of germination and growth of redroot pigweed (Amaranthus retroflexus) and common purslane (Portulaca oleracea) by rye mulch, whereas velvetleaf (Abutilon theophrasti) and common lambsquarters (Chenopodium album) were not suppressed. Since BOA detoxification by metabolic alteration may influence the relation between the benzoxazinoid content of the soil mulch and weed suppression, we tested the dynamics in BOA detoxification in different plant organs of three and 10-day-old seedlings of four warm season weeds incubated with five BOA concentrations (4, 20, 40, 80, and 200 µmol g(-1) fresh weight). In addition, germination and length of 3-day-old seedlings were measured after exposure to 0, 0.3, 1.5, 3, 6, and 15 µmol BOA. Finally, we tested the influence of the MDR translocator inhibitors verapamil, nifedipine, and the GST inhibitor ethycrynic acid on BOA accumulation and detoxification activity. Due to BOA-detoxification, all weeds were able to grow in environments with low BOA contents. At higher contents, Abutilon theophrasti and Chenopodium album had a better chance to survive because of highly active mechanisms that avoided the uptake of BOA (A. theophrasti) and of efficient detoxification activities in youngest seedlings (C. album). The interpretation of all of the data gave the following sequence of increasing sensitivity: A. theophrasti <<< C. album << P. oleracea ≤ A. retroflexus. The results were in agreement with recent findings of the suppression of these weeds by rye mulches and their benzoxazinoid contents. Our studies demonstrate for the first time that the detoxification of BOA influences the survival of certain weeds in environments enriched with this allelochemical. Therefore, detoxification processes affect the potential for weed suppression by soil allelochemicals in sustainable weed management.


Assuntos
Benzoxazinas/metabolismo , Benzoxazóis/metabolismo , Magnoliopsida/metabolismo , Plantas Daninhas/metabolismo , Plântula/metabolismo , Germinação , Inativação Metabólica , Magnoliopsida/crescimento & desenvolvimento , Controle Biológico de Vetores , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Daninhas/crescimento & desenvolvimento , Secale/química , Plântula/crescimento & desenvolvimento
14.
Plant Signal Behav ; 5(7): 832-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20484979

RESUMO

Monoterpenes at high atmospheric concentrations are strong growth inhibitors in allelopathic interactions. Effects depend on dose, molecular structure of the monoterpene and on the species of the receiver plant. Stomata are among the first targets affected by camphor and menthol. Previously, it could be demonstrated that the compounds induce swelling of the protoplasts, prevent stomatal closure and enhance transpiration. In this study, we show that the block of stomatal closure is accompanied by changes to the cytoskeleton, which has a direct role in stomatal movements. Although MPK3 (MAP3 kinase) and ABF4 gene expressions are induced within six hours, stomatal closure is prevented. In contrast to ABF4, ABF2 (both transcription factors) is not induced. MPK3 and ABF4 both encode for proteins involved in the process of stomatal closure. The expression of PEPCase, an enzyme important for stomatal opening, is down regulated. The leaves develop stress symptoms, mirrored by transient changes in the expression profile of additional genes: lipoxygenase 2 (LOX2), CER5, CER6 (both important for wax production) and RD29B (an ABA inducible stress protein). Non-invasive methods showed a fast response of the plant to camphor fumigations both in a rapid decrease of the quantum yield and in the relative growth rate. Repeated exposures to the monoterpenes resulted finally in growth reduction and a stress related change in the phenotype. It is proposed that high concentrations or repeated exposure to monoterpenes led to irreversible damages, whereas low concentrations or short-term fumigations may have the potential to strengthen the plant fitness.


Assuntos
Arabidopsis/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Monoterpenos/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cânfora/farmacologia , Perfilação da Expressão Gênica , Mentol/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fenótipo , Estômatos de Plantas
15.
J Chem Ecol ; 33(2): 225-37, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17200890

RESUMO

Benzoxazolinone detoxification is similar in plants grown under sulfur deficiency conditions and in control plants grown with an optimal S supply. However, when S-deficient plants were treated with metolachlor before benzoxazolin-2(3H)-one (BOA) incubation, detoxification was reduced, as indicated by a lower accumulation of the detoxification products BOA-6-O-glucoside and glucoside carbamate and by a loss of BOA-6-OH glucosyltransfease activity. Root colonizing microorganisms and the endophytic fungus Fusarium verticillioides participated in benzoxazolinone detoxification by converting the compound to 2-acetamidophenol (AAP) or O-hydroxyphenyl malonamic acid (OHPMA), a process accompanied by the appearance of phenoxazinone. Maize roots, however, absorbed AAP and OHPMA only in traces. Absorbed traces of OHPMA stimulated maize radicle growth, and traces of AAP stimulated cress. Phenoxazinone inhibited the growth of cress radicles at concentrations higher than 500 microM, whereas maize radicles were hardly affected. F. verticillioides did not convert benzoxazolinone to any known microbial degradation product when the medium of maize seedlings was inoculated with the fungus under sterile condition. Plant-fungus interactions seem to be important in plant survival of allelopathic attacks. This study points to a complicated network of allelopathic interactions that are influenced by biotic and abiotic factors, including herbicides.


Assuntos
Benzoxazóis/metabolismo , Fusarium/metabolismo , Enxofre/metabolismo , Zea mays/metabolismo , Zea mays/microbiologia , Acetamidas/farmacologia , Acetaminofen/metabolismo , Inativação Metabólica , Oxazinas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plântula/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
16.
Plant Signal Behav ; 2(4): 231-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19516993

RESUMO

Exposure to the allelopathic monoterpenes camphor (100 mg/10 L) and menthol (50 mg/10 L) for 24 h enhanced transpiration of Arabidopsis thaliana fully developed rosette leaves similar to de-waxing. As ascertained by ESEM analyses the leaf surfaces were spotted with platelet like structures which seem to be partly mixed with the lipophilic epicuticular layers. The structures are supposed to contain the condensed monoterpenes, which could be identified by GC. Long term exposure (more than 48 h) to 100 mg/50 mg killed the plants by desiccation, a 24 h exposure caused necrotic spots that became visible one to two days after the treatment. Examinations of the stomatal apertures indicated that monoterpenes induced stomatal opening followed by extreme swelling and a final break down of the protoplasts. Exposure of Arabidopsis thaliana to volatiles of Mentha piperita, Lavandula latifolia and Artemisia camphorata resulted in a dramatic increase of the stomata aperture but swelling of the protoplasts was less exhibited.In contrast to de-waxing, expression of the fatty acid condensing enzyme encoding CER6 gene and de novo synthesis of CER6 protein was not induced after 24 h of exposure to the monoterpenes.The aim of the study was to demonstrate that the lipophilic layers of the leaf surface and the stomata are primary targets of monoterpene allelopathic attack. Enhanced transpiration results from a combination of affected lipophilic wax layers and a disturbed stomata function.

17.
J Nat Prod ; 69(1): 34-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16441064

RESUMO

Incubation of Zea mays cv. Nicco seedlings with 6-methoxybenzoxazolin-2(3H)-one (MBOA) led to a minor detoxification product hitherto only found in Poaceae. This new compound was identified as 1-(2-hydroxy-4-methoxyphenylamino)-1-deoxy-beta-glucoside 1,2-carbamate (1) (methoxy glucoside carbamate) and represents an analogue to the previously described 1-(2-hydroxyphenylamino)-1-deoxy-beta-glucoside 1,2-carbamate (glucoside carbamate) from benzoxazolin-2(3H)-one (BOA). In Portulaca oleracea var. sativa cv. Gelber treatment with BOA resulted in further unknown detoxification products, which were not synthesized in detectable amounts after BOA absorption in all other species tested. Compound 1 easily undergoes decay into BOA-5-O-glucoside (2). Z. mays seedlings, known to produce BOA-6-O-Glc on incubation with BOA, are able to transform BOA-5-OH into BOA-5-O-glucoside (2). Besides the known compounds, maize contained a formerly unseen product that accumulated during late stages of the detoxification process. It was isolated and identified as 1-(2-hydroxyphenylamino)-6-O-malonyl-1-deoxy-beta-glucoside 1,2-carbamate (3) (malonyl glucoside carbamate).


Assuntos
Benzoxazóis/farmacologia , Glucosídeos/isolamento & purificação , Portulaca/metabolismo , Zea mays/metabolismo , Biotransformação , Glucosídeos/química , Glucosídeos/farmacologia , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Plântula/efeitos dos fármacos
18.
J Biol Chem ; 280(23): 21867-81, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15824099

RESUMO

Benzoxazolin-2(3H)-one (BOA) is an allelochemical most commonly associated with monocot species, formed from the O-glucoside of 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one by a two-step degradation process. The capacity of Arabidopsis to detoxify exogenously supplied BOA was analyzed by quantification of the major known metabolites BOA-6-OH, BOA-6-O-glucoside, and glucoside carbamate, revealing that detoxification occurs predominantly through O-glucosylation of the intermediate BOA-6-OH, most likely requiring the sequential action of as-yet-unidentified cytochrome P450 and UDP-glucosyltransferase activities. Transcriptional profiling experiments were also performed with Arabidopsis seedlings exposed to BOA concentrations, representing I(50) and I(80) levels based on root elongation inhibition assays. One of the largest functional categories observed for BOA-responsive genes corresponded to protein families known to participate in cell rescue and defense, with the majority of these genes potentially associated with chemical detoxification pathways. Further experiments using a subset of these genes revealed that many are also transcriptionally induced by a variety of structurally diverse xenobiotic compounds, suggesting they comprise components of a coordinately regulated, broad specificity xenobiotic defense response. The data significantly expand upon previous studies examining plant transcriptional responses to allelochemicals and other environmental toxins and provide novel insights into xenobiotic detoxification mechanisms in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Inativação Metabólica , Plântula/metabolismo , Motivos de Aminoácidos , Benzoxazóis/farmacologia , Proliferação de Células , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Modelos Químicos , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/metabolismo , Proteoma , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transcrição Gênica , Xenobióticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...